
LAB MANUAL

Session: 2024-2025 (Odd Semester)

Data Structures Lab
SUBJECT CODE: BCS-351

Department of Computer Science and Information Technology
B.Tech, Second Year, Session-2024-25 (ODD)

Dronacharya Group of Institutions
Dr A P J ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW.

Table of Contents
1. Vision and Mission of the Institute.

2. Vision and Mission of the Department.

3. Program Outcomes (POs).

4. Program Educational Objectives (PEOs/PSOs) .

5. University Syllabus.

6. Course Outcomes (COs).

7. Course Overview.

8. List of Experiments mapped with COs.

9. DO’s and DON’Ts.

10. General Safety Precautions.

11. Guidelines for students for report preparation.

12. Lab Experiments.

DRONACHARYA GROUP OF INSTITUTIONS
GREATER NOIDA

VISION
 Instilling core human values and facilitating competence to address global challenges

by providing Quality Technical Education.

MISSION

 M1 - Enhancing technical expertise through innovative research and education,
fostering creativity and excellence in problem-solving.

 M2 - Cultivating a culture of ethical innovation and user-focused design, ensuring
technological progress enhances the well-being of society.

 M3 - Equipping individuals with the technical skills and ethical values to lead and
innovate responsibly in an ever-evolving digital landscape.

DEPARTMENT OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

VISION
 Promoting technologists by imparting profound knowledge in information technology,

all while instilling ethics through specialized technical education.

MISSION

 Delivering comprehensive knowledge in information technology, preparing
technologists to excel in a rapidly evolving digital landscape.

 Building a culture of honesty and responsibility in tech, promoting smart and ethical
leadership.

 Empowering individuals with specialized technical skills and ethical values to drive
positive change and innovation in the tech industry.

Program Outcomes (POs)

Engineering Graduates will be able to:

Program
Outcomes

Statement

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex computer engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyse complex computer
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex computer engineering problems
and design system components or processes that meet the specific needs with appropriate
considerations for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide conclusions

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modelling to complex engineering activities with
an understanding of the limitations

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent relevant to the professional
engineering practices

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norm of
the engineering practices

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings

PO10 Communications: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

 PSO1: To adapt to emerging technologies and develop innovative solutions for
existing and newer problems.

 PSO2: To create and apply appropriate techniques IT tools to complex engineering
activities with an understanding of the limitations.

 PSO3: To manage complex IT projects with consideration of the human, financial,
ethical and environmental factors.

CO – PO Mapping

BCS-351. 1 Practice various Sorting and Searching Algorithms.

BCS-351. 2
Analyze the recursive implementation of different sorting and searching
algorithms.

BCS-351. 3
Exercise various data Structure operations using static and dynamic memory
allocation.

BCS-351. 4
Demonstrate various operations like traversal, insertion, deletion on tree data
structure.

BCS-351. 5
Illustrate and Implement practical applications based on graphs and shortest
paths.

CO-PSO Mapping:

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
CO 1 3 3 3 - 2 - - - - 1 1 2
CO 2 3 3 3 - 2 - - - - 1 1 2
CO 3 3 2 3 - 2 - - - - 1 1 2
CO 4 3 3 3 - 2 - - - - 1 1 2
CO 5 3 3 3 - 2 - - - - 1 1 3

PSO1 PSO2 PSO3
1 2 1
1 3 1
1 3 1
2 2 1
2 2 1

Course Overview
The students will be able to investigates abstract data types (ADTs), recursion, algorithms for
searching and sorting, and basic algorithm analysis. ADTs to be covered include lists, stacks,
queues, priority queues, trees, sets, and graphs. The emphasis is on the trade-offs associated
with implementing alternative data structures for these ADTs.

Course Objectives
 To introduce the fundamental concept of data structures including link-list
 To emphasize the importance of data structures in implementing the algorithms
 To develop effective skills in the implementation of data structure

LIST OF PROGRAMS

S.No. TYPE OF PROBLEM PROGRAM
1.

Linear and 2D Array

Write a program to insert an element in array
2. Write a program to access matrix by recursive call
3. To implement addition and multiplication of two 2D

arrays
4. Write a program to calculate transpose a 2D array
5.

Stack using Array &
Linked List

Write a program to implement stack using array.

6. Write a program to implement Linked List insertion.

7. Write a program to implement stack using linked list.
8.

Queue using Array &
Linked List

Write a program to implement circular queue using
array.

9. Write a program to implement queue using array.

10. Write a program to implement queue using linked list.

11. Write a program to implement circular queue using
linked list.

12.

Tree & Graph using
Linked List

Write a program to implement BFS using linked list.

13. Write a program to implement tree traversals using
linked list.

14. Write a program to implement DFS using linked list.
15.

Linear Search

Write a program on linear search

16. Write a program to compare two numbers

17. Write a program to access array elements

18. Write a program on linear search based on link-list
19.

Binary Search

Write a program on Binary Search

20. Write a program to access array elements randomly

21. Write a program on multi-way Search
22.

Bubble sort

Write a program on Bubble sort

23. Write a program to swap numbers

24. Write a program to use nested loops

25. Write a program on linear bubble sort
26. Selection sort Write a program on Selection sort

27. Write a program to find largest from array

28. Write a program on Selection sort based on link-list
29.

Insertion sort

Write a program on Insertion sort

30. Write a program to insert a number into a array

31. Write a program on Insertion sort based on link-list

32.

Merge sort

Write a program on Merge sort

33. Write a program to merge two sorted array

34. Write a program to use a recursive function call

35. Write a program to display step by step merge sort
36.

Quick sort

Write a program on Quick sort

37. Write a program to divide an array into two part

38. Write a program to display step by step quick sort
39.

Heap sort

Write a program on Heap sort

40. Write a program to represent binary tree using array

41. Write a program to create Max-Heap

42. Write a program on Heap sort in descending order

Experiment plan

Experiment No. 1.
Type of problem Linear and 2D Array
Students are required to Algorithm

implement/execute/draw/make
document

Program
Output
Final document with evaluator signature.

List of experiments
1. Write a program to insert an element in array
2. Write a program to access matrix by recursive call
3. To implement addition and multiplication of two 2D arrays
4. Write a program to calculate transpose a 2D array

Array is a container which can hold a fix number of items and these items should be
of the same type. Most of the data structures make use of arrays to implement their
algorithms. Following are the important terms to understand the concept of Array.
Element − Each item stored in an array is called an element.
Index − Each location of an element in an array has a numerical index, which is used
to identify the element.
Array Representation
Arrays can be declared in various ways in different languages. For illustration, let's
take C array declaration.

As per the above illustration, following are the important points to be considered.
Index starts with 0.
Array length is 10 which mean it can store 10 elements.
Each element can be accessed via its index. For example, we can fetch an element at
index 6 as 9.
Basic Operations
Following are the basic operations supported by an array.
Traverse − print all the array elements one by one.
Insertion − Adds an element at the given index.
Deletion − Deletes an element at the given index.
Search − Searches an element using the given index or by the value.
Update − Updates an element at the given index.
Insertion Operation
Insert operation is to insert one or more data elements into an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index of
array.
Here, we see a practical implementation of insertion operation, where we add data at
the end of the array −
Algorithm
Let Array be a linear unordered array of MAX elements.
Example
Result
Let LA be a Linear Array (unordered) with N elements and K is a positive integer
such that K<=N. Following is the algorithm where ITEM is inserted into the Kth
position of LA −
1. Start

2. Set J = N
3. Set N = N+1
4. Repeat steps 5 and 6 while J >= K
5. Set LA[J+1] = LA[J]
6. Set J = J-1
7. Set LA[K] = ITEM
8. Stop
Deletion Operation
Deletion refers to removing an existing element from the array and re-organizing all
elements of an array.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that
K<=N. Following is the algorithm to delete an element available at the Kth position of
LA.
1. Start
2. Set J = K
3. Repeat steps 4 and 5 while J < N
4. Set LA[J-1] = LA[J]
5. Set J = J+1
6. Set N = N-1
7. Stop
Search Operation
You can perform a search for an array element based on its value or its index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that
K<=N. Following is the algorithm to find an element with a value of ITEM using
sequential search.
Update Operation
Update operation refers to updating an existing element from the array at a given
index.
Algorithm
Consider LA is a linear array with N elements and K is a positive integer such that
K<=N. Following is the algorithm to update an element available at the Kth position
of LA.
1. Start
2. Set LA[K-1] = ITEM
3. Stop

C Program to Insert an Element in a Specified Position in a given Array
/* C program to insert a particular element in a specified position
* in a given array */
#include <stdio.h>

void main()
{

int array[10];
int i, j, n, m, temp, key, pos;

printf("Enter how many elements \n");
scanf("%d", &n);
printf("Enter the elements \n");
for (i = 0; i < n; i++)
{
scanf("%d", &array[i]);

}
printf("Input array elements are \n");
for (i = 0; i < n; i++)
{
printf("%d\n", array[i]);

}
for (i = 0; i < n; i++)
{
for (j = i + 1; j < n; j++)
{
if (array[i] > array[j])
{
temp = array[i];
array[i] = array[j];
array[j] = temp;

}
}

}
printf("Sorted list is \n");
for (i = 0; i < n; i++)
{
printf("%d\n", array[i]);

}
printf("Enter the element to be inserted \n");
scanf("%d", &key);
for (i = 0; i < n; i++)
{
if (key < array[i])
{
pos = i;
break;

}
if (key > array[n-1])
{
pos = n;
break;

}
}
if (pos != n)
{
m = n - pos + 1 ;

for (i = 0; i <= m; i++)
{
array[n - i + 2] = array[n - i + 1] ;

}
}
array[pos] = key;
printf("Final list is \n");
for (i = 0; i < n + 1; i++)
{
printf("%d\n", array[i]);

}
}

OUTPUT
Enter how many elements
5
Enter the elements
76
90
56
78
12
Input array elements are
76
90
56
78
12
Sorted list is
12
56
76
78
90
Enter the element to be inserted
61
Final list is
12
56
61
76
78
90
Write a program to access matrix by recursive call
#include <stdio.h>
#define MAX_SIZE 100

/* Function declaration */
void printArray(int arr[], int start, int len);

int main()
{
int arr[MAX_SIZE];
int N, i;

/* Input size and elements in array */
printf("Enter size of the array: ");
scanf("%d", &N);
printf("Enter elements in the array: ");
for(i=0; i<N; i++)
{
scanf("%d", &arr[i]);

}

/* Prints array recursively */
printf("Elements in the array: ");
printArray(arr, 0, N);

return 0;
}

/**
* Prints an array recursively within a given range.
*/
void printArray(int arr[], int start, int len)
{
/* Recursion base condition */
if(start >= len)
return;

/* Prints the current array element */
printf("%d, ", arr[start]);

/* Recursively call printArray to print next element in the array */
printArray(arr, start + 1, len);

}

OUTPUT
Enter size of the array: 10
Enter elements in the array: 1 2 3 4 5 6 7 8 9 10
Elements in the array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

To implement addition and multiplication of two 2D arrays
#include<stdio.h>

void Matrix_Display(int a[][20],int n)
{

int i,j;
for(i=0; i<n; i++)

{
for(j=0; j<n; j++)
{
printf(" %d",a[i][j]);
}
printf("\n");
}

}

int main()
{
int n,i,j,k;
int a[20][20];
int b[20][20];
int c[20][20];

printf("\n Enter the dimensions of the 2 Square matrices: ");
scanf("%d",&n);

printf("\n Enter elements of Matrix A: ");
for(i=0; i<n; i++)
for(j=0; j<n; j++)
scanf("%d",&a[i][j]);

printf("\n Enter elements of Matrix B: ");
for(i=0; i<n; i++)
for(j=0; j<n; j++)
scanf("%d",&b[i][j]);

printf("\n Matrix A: \n");
Matrix_Display(a,n);

printf("\n\n Matrix B: \n");
Matrix_Display(b,n);

//Addition
for(i=0; i<n; i++)
for(j=0; j<n; j++)
c[i][j]=a[i][j]+b[i][j];

printf("\n\n Addition of A and B gives: \n");
Matrix_Display(c,n);

//Subtraction
for(i=0; i<n; i++)
for(j=0; j<n; j++)
c[i][j]=a[i][j]-b[i][j];

printf("\n\n Subtraction of A and B gives: \n");

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Matrix_Display(c,n);

//Multiplication
for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
c[i][j]=0;
for(k=0; k<n; k++)
c[i][j]+=a[i][k]*b[k][j];
}

printf("\n\n Multiplication of A and B gives: \n");
Matrix_Display(c,n);

}

OUTPUT

Enter the dimensions of the 2 Square matrices: 2

Enter elements of Matrix A: 1 2 3 4

Enter elements of Matrix B: 4 3 2 1

Matrix A:
1 2
3 4

Matrix B:
4 3
2 1

Addition of A and B gives:
5 5
5 5
Subtraction of A and B gives:
-3 -1
1 3

Multiplication of A and B gives:
8 5
20 13

C program to transpose the 2D array
/* C program to transpose the 2D array
*/
#include<stdio.h>

void main()
{

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

int a[10][10], b[10][10], m, n, i, j;

printf("\nEnter number of rows & columns of aray :
");

scanf("%d %d", &m, &n);
printf("\nEnter elements of 2-D array:\n");
for(i=0; i<m; i++)
{

for(j=0; j<n; j++)
{

scanf("%d", &a[i][j]);
}

}
printf("\n\n2-D array before

transposing:\n\n");
for(i=0; i<m; i++)
{

for(j=0; j<n; j++)
{

printf("\t%d", a[i][j]);
}
printf("\n\n");

}

/* Transposing array */
for(i=0; i<m; i++)
{

for(j=0; j<n; j++)
{

b[j][i] = a[i][j];
}

}

printf("\n\n2-D array after
transposing:\n\n");

for(i=0; i<n; i++)
{

for(j=0; j<m; j++)
{

printf("\t%d",
b[i][j]);

}

printf("\n\

n");
}
getch();

}

We create the 2D array first and after that its transpose is done which is stored in new
2D array. Hence the result is printed.
Input-
Enter number of rows & columns of array: 3 x 3
Enter elements of 2-D array:
25 12 4 62 34 23 6 4 3
OUTPUT-
2-D array before transposing:
25 12 4
62 34 23
6 4 3
2-D array after transposing:
25 62 6
12 34 4
4 23 3

Experiment No. 2.
Type of problem Stack using Array & Linked List

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments
1. Write a program to implement stack using array.
2. Write a program to implement Linked List insertion.
3. Write a program to implement stack using linked list.

A stack is an Abstract Data Type (ADT), commonly used in most programming
languages. It is named stack as it behaves like a real-world stack, for example – a
deck of cards or a pile of plates, etc. A real-world stack allows operations at one end
only. For example, we can place or remove a card or plate from the top of the stack
only. Likewise, Stack ADT allows all data operations at one end only. At any given
time, we can only access the top element of a stack.
This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the
element which is placed (inserted or added) last, is accessed first. In stack
terminology, insertion operation is called PUSH operation and removal operation is
called POP operation.
Stack Representation
The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List.
Stack can either be a fixed size one or it may have a sense of dynamic resizing. Here,
we are going to implement stack using arrays, which makes it a fixed size stack
implementation.
Basic Operations
Stack operations may involve initializing the stack, using it and then de-initializing it.
Apart from these basic stuffs, a stack is used for the following two primary operations
−
push() − Pushing (storing) an element on the stack.
pop() − Removing (accessing) an element from the stack.
When data is PUSHed onto stack.
To use a stack efficiently, we need to check the status of stack as well. For the same
purpose, the following functionality is added to stacks −

peek() − get the top data element of the stack, without removing it.
isFull() − check if stack is full.
isEmpty() − check if stack is empty.
At all times, we maintain a pointer to the last PUSHed data on the stack. As this
pointer always represents the top of the stack, hence named top. The top pointer
provides top value of the stack without actually removing it.
Push Operation
The process of putting a new data element onto stack is known as a Push Operation.
Push operation involves a series of steps −
Step 1 − Checks if the stack is full.
Step 2 − If the stack is full, produces an error and exit.
Step 3 − If the stack is not full, increments top to point next empty space.
Step 4 − Adds data element to the stack location, where top is pointing.
Step 5 − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate
space dynamically.
Algorithm for PUSH Operation
A simple algorithm for Push operation can be derived as follows −
begin procedure push: stack, data

if stack is full
return null

endif

top ← top + 1

stack[top] ← data

end procedure
Implementation of this algorithm in C, is very easy. See the following code −
Example
void push(int data) {
if(!isFull()) {
top = top + 1;
stack[top] = data;

} else {

printf("Could not insert data, Stack is full.\n");
}

}
Pop Operation
Accessing the content while removing it from the stack, is known as a Pop Operation.
In an array implementation of pop() operation, the data element is not actually
removed, instead top is decremented to a lower position in the stack to point to the
next value. But in linked-list implementation, pop() actually removes data element
and deallocates memory space.
A Pop operation may involve the following steps −
Step 1 − Checks if the stack is empty.
Step 2 − If the stack is empty, produces an error and exit.
Step 3 − If the stack is not empty, accesses the data element at which top is pointing.
Step 4 − Decreases the value of top by 1.
Step 5 − Returns success.

Algorithm for Pop Operation
A simple algorithm for Pop operation can be derived as follows −
begin procedure pop: stack

if stack is empty
return null

endif

data ← stack[top]

top ← top - 1

return data

end procedure
Implementation of this algorithm in C, is as follows −
Example
int pop(int data) {

if(!isempty()) {

data = stack[top];
top = top - 1;
return data;

} else {
printf("Could not retrieve data, Stack is empty.\n");

}
}

Write a program to implement stack using array.
//stack using array
#include<stdio.h>
#include<conio.h>
int stack[100],choice,n,top,x,i;
void push();
void pop();
void display();
void main()
{
//clrscr();
top=-1;
printf("\n Enter the size of STACK[MAX=100]:");
scanf("%d",&n);
printf("\n\t STACK OPERATIONS USING ARRAY");
printf("\n\t--------------------------------");
printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");
do
{
printf("\n Enter the Choice:");
scanf("%d",&choice);
switch(choice)
{
case 1:
{
push();
break;

}
case 2:
{
pop();
break;

}
case 3:
{
display();
break;

}
case 4:
{
printf("\n\t EXIT POINT ");
break;

}
default:
{
printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");

}
getch();
}

}
while(choice!=4);

}
void push()
{
if(top>=n-1)
{
printf("\n\tSTACK is over flow");
getch();

}
else
{
printf(" Enter a value to be pushed:");
scanf("%d",&x);
top++;
stack[top]=x;

}
}
void pop()
{
if(top<=-1)
{
printf("\n\t Stack is under flow");

}
else
{
printf("\n\t The popped elements is %d",stack[top]);
top--;

}
}
void display()
{
if(top>=0)
{
printf("\n The elements in STACK \n");
for(i=top; i>=0; i--)
printf("\n%d",stack[i]);

printf("\n Press Next Choice");
}
else
{
printf("\n The STACK is empty");

}

}

OUTPUT
Enter the size of STACK[MAX=100]:10

STACK OPERATIONS USING ARRAY

1.PUSH
2.POP
3.DISPLAY
4.EXIT

Enter the Choice:1
Enter a value to be pushed:12

Enter the Choice:1
Enter a value to be pushed:24

Enter the Choice:1
Enter a value to be pushed:98

Enter the Choice:3

The elements in STACK

98
24
12
Press Next Choice
Enter the Choice:2

The popped elements is 98
Enter the Choice:3

The elements in STACK

24
12
Press Next Choice
Enter the Choice:4

EXIT POINT

Write a program to implement Linked List insertion.
/ A complete working C program to demonstrate all insertion methods
// on Linked List
#include <stdio.h>
#include <stdlib.h>

// A linked list node
struct Node

{
int data;
struct Node *next;
};

/* Given a reference (pointer to pointer) to the head of a list and
an int, inserts a new node on the front of the list. */

void push(struct Node** head_ref, int new_data)
{
/* 1. allocate node */
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));

/* 2. put in the data */
new_node->data = new_data;

/* 3. Make next of new node as head */
new_node->next = (*head_ref);

/* 4. move the head to point to the new node */
(*head_ref) = new_node;

}

/* Given a node prev_node, insert a new node after the given
prev_node */

void insertAfter(struct Node* prev_node, int new_data)
{
/*1. check if the given prev_node is NULL */
if (prev_node == NULL)
{
printf("the given previous node cannot be NULL");
return;
}

/* 2. allocate new node */
struct Node* new_node =(struct Node*) malloc(sizeof(struct Node));

/* 3. put in the data */
new_node->data = new_data;

/* 4. Make next of new node as next of prev_node */
new_node->next = prev_node->next;

/* 5. move the next of prev_node as new_node */
prev_node->next = new_node;

}

/* Given a reference (pointer to pointer) to the head
of a list and an int, appends a new node at the end */

void append(struct Node** head_ref, int new_data)
{

/* 1. allocate node */
struct Node* new_node = (struct Node*) malloc(sizeof(struct Node));

struct Node *last = *head_ref; /* used in step 5*/

/* 2. put in the data */
new_node->data = new_data;

/* 3. This new node is going to be the last node, so make next of
it as NULL*/

new_node->next = NULL;

/* 4. If the Linked List is empty, then make the new node as head */
if (*head_ref == NULL)
{
*head_ref = new_node;
return;

}

/* 5. Else traverse till the last node */
while (last->next != NULL)
last = last->next;

/* 6. Change the next of last node */
last->next = new_node;
return;

}

// This function prints contents of linked list starting from head
void printList(struct Node *node)
{
while (node != NULL)
{
printf(" %d ", node->data);
node = node->next;

}
}

/* Driver program to test above functions*/
int main()
{
/* Start with the empty list */
struct Node* head = NULL;
// Insert 6. So linked list becomes 6->NULL
append(&head, 6);
// Insert 7 at the beginning. So linked list becomes 7->6->NULL
push(&head, 7);
// Insert 1 at the beginning. So linked list becomes 1->7->6->NULL
push(&head, 1);
// Insert 4 at the end. So linked list becomes 1->7->6->4->NULL

append(&head, 4);
// Insert 8, after 7. So linked list becomes 1->7->8->6->4->NULL
insertAfter(head->next, 8);
printf("\n Created Linked list is: ");
printList(head);
return 0;
}

OUTPUT
Created Linked list is: 1 7 8 6 4

3. Write a program to implement stack using linked list.

#include<stdio.h>
#include<stdlib.h>
struct node
{
int info;

struct node
*ptr;

}*top,*top1,*tem
p;

int
topelement(
);
void push(int data);
void pop();
void
empty();
void
display();
void
destroy();
void
stack_count(
);
void
create();
int count
= 0;
void
main()

{
int no, ch, e;
printf("\n 1 - Push");
printf("\n 2 - Pop");
printf("\n 3 - Top");
printf("\n 4 - Empty");
printf("\n 5 - Exit");
printf("\n 6 - Dipslay");
printf("\n 7 - Stack Count");
printf("\n 8 - Destroy

stack");

create();
while (1)
{
printf("\n Enter choice : ");
scanf("%d", &ch);

switch (ch)
{
case 1:
printf("Enter

data : ");

scanf("%d",
&no);

push(no);

break;
Case 2:
pop();

break;

case 3:
if (top == NULL)
printf("No elements in stack");

else
{

e = topelement();
printf("\n Top element : %d", e);

}
break;

case 4:
empty();
break;

case 5:
exit(0);

case 6:
display();
break;

case 7:
stack_count();
break;

case 8:
destroy();
break;

default :

printf(" Wrong choice, Please enter correct choice ");

break;
}

}
}

/* Create empty stack */

void create()
{
top = NULL;

}

/* Count stack elements */
void stack_count()
{

printf("\n No. of elements in stack : %d", count);

}

/* Push data into stack */
void push(int data)
{
if (top == NULL)
{
top =(struct node *)malloc(1*sizeof(struct node));
top->ptr = NULL;
top->info = data;

}
else
{
temp =(struct node

*)malloc(1*sizeof(struct node));
temp->ptr = top;
temp->info = data;
top = temp;

}

count++;
}

/* Display stack elements */
void display()
{
top1 = top;

if (top1 == NULL)
{
printf("Stack is

empty");
return;

}

while (top1 != NULL)
{

printf("%d ", top1->info);

top1 = top1->ptr;
}

}

/* Pop Operation on stack */
void pop()
{
top1 = top;

if (top1 == NULL)
{

printf("\n Error : Trying to pop from empty stack");

return;
}
Else
top1 = top1->ptr;

printf("\n Popped value : %d", top->info);

free(top);
top = top1;
count--;

}

/* Return top element */
int topelement()
{

return(top->info);
}

/* Check if stack is empty or not */
void empty()
{
if (top == NULL)

printf("\n Stack is empty");
else
printf("\n Stack is not empty with %d elements",

count);
}

/* Destroy entire stack */
void destroy()
{

top1 = top;
while (top1 != NULL)

{
top1 = top->ptr;
free(top);
top = top1;
top1 = top1->ptr;

}
free(top1);
top = NULL;

printf("\n All stack
elements destroyed");

count = 0;
}

OUTPUT
1 - Push
2 - Pop
3 - Top
4 - Empty
5 -
Exit
6 -
Dipsla
y
7 -
Stack
Count
8 - Destroy stack
Enter
choice :
1
Enter
data :
56
Enter
choic
e : 1
Enter
data :
80
Ente
r
choi
ce :
2

Popped value : 80
Enter choice : 3

Top element : 56

Enter choice : 1
Enter data : 78

Enter choice : 1

Enter data : 90

Enter choice : 6

90 78 56

Enter choice : 7

No. of elements in stack : 3

Enter choice : 8

All stack elements destroyed

Enter choice : 4

Stack is empty

Enter choice : 5

Experiment No. 3.
Type of problem Queue using Array & Linked List

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1. Write a program to implement circular queue
using array.
2. Write a program to implement queue using array.
3. Write a program to implement queue using
linked list.
4. Write a program to implement circular queue
using linked list.

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a
queue is open at both its ends. One end is always used to insert data (enqueue) and the
other is used to remove data (dequeue). Queue follows First-In-First-Out
methodology, i.e., the data item stored first will be accessed first.
A real-world example of queue can be a single-lane one-way road, where the vehicle
enters first, exits first. More real-world examples can be seen as queues at the ticket
windows and bus-stops.
Queue Representation
As we now understand that in queue, we access both ends for different reasons. The
following diagram given below tries to explain queue representation as data structure
−

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers
and Structures. For the sake of simplicity, we shall implement queues using one-
dimensional array.
Basic Operations
Queue operations may involve initializing or defining the queue, utilizing it, and then
completely erasing it from the memory. Here we shall try to understand the basic
operations associated with queues −
enqueue() − add (store) an item to the queue.
dequeue() − remove (access) an item from the queue.
Few more functions are required to make the above-mentioned queue operation
efficient. These are −
peek() − Gets the element at the front of the queue without removing it.
isfull() − Checks if the queue is full.
isempty() − Checks if the queue is empty.
In queue, we always dequeue (or access) data, pointed by front pointer and while
enqueing (or storing) data in the queue we take help of rear pointer.
Let's first learn about supportive functions of a queue −
peek()
This function helps to see the data at the front of the queue. The algorithm of peek()
function is as follows −
Algorithm
begin procedure peek

return queue[front]

end procedure
Implementation of peek() function in C programming language −
Example
int peek() {
return queue[front];

}
isfull()
As we are using single dimension array to implement queue, we just check for the rear
pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain
the queue in a circular linked-list, the algorithm will differ. Algorithm of isfull()
function −
Algorithm
begin procedure isfull

if rear equals to MAXSIZE
return true

else
return false

endif

end procedure
Implementation of isfull() function in C programming language −
Example
bool isfull() {
if(rear == MAXSIZE - 1)
return true;

else
return false;

}
isempty()
Algorithm of isempty() function −
Algorithm
begin procedure isempty

if front is less than MIN OR front is greater than rear
return true

else
return false

endif

end procedure
If the value of front is less than MIN or 0, it tells that the queue is not yet initialized,
hence empty.
Here's the C programming code −
Example
bool isempty() {
if(front < 0 || front > rear)
return true;

else
return false;

}
Enqueue Operation
Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.
The following steps should be taken to enqueue (insert) data into a queue −
Step 1 − Check if the queue is full.
Step 2 − If the queue is full, produce overflow error and exit.
Step 3 − If the queue is not full, increment rear pointer to point the next empty space.
Step 4 − Add data element to the queue location, where the rear is pointing.
Step 5 − return success.

Sometimes, we also check to see if a queue is initialized or not, to handle any
unforeseen situations.
Algorithm for enqueue operation
procedure enqueue(data)
if queue is full
return overflow

endif

rear ← rear + 1

queue[rear] ← data

return true

end procedure
Implementation of enqueue() in C programming language −
Example
int enqueue(int data)
if(isfull())
return 0;

rear = rear + 1;
queue[rear] = data;

return 1;
end procedure
Dequeue Operation
Accessing data from the queue is a process of two tasks − access the data where front
is pointing and remove the data after access. The following steps are taken to perform
dequeue operation −
Step 1 − Check if the queue is empty.
Step 2 − If the queue is empty, produce underflow error and exit.
Step 3 − If the queue is not empty, access the data where front is pointing.
Step 4 − Increment front pointer to point to the next available data element.
Step 5 − Return success.

Algorithm for dequeue operation
procedure dequeue
if queue is empty
return underflow

end if

data = queue[front]
front ← front + 1

return true
end procedure
Implementation of dequeue() in C programming language −
Example
int dequeue() {

if(isempty())
return 0;

int data = queue[front];
front = front + 1;

return data;
}

Write a program to implement circular queue using array

//Program for Circular Queue implementation through Array
#include <stdio.h>
#include<ctype.h>
#include<stdlib.h>
#define MAXSIZE 5
int cq[MAXSIZE];
int front,rear;
void main()
{

void add(int,int);
void del(int);
int will=1,i,num;
front = -1;
rear = -1;
clrscr();
printf("\nProgram for Circular Queue demonstration through array");
while(1)
{

printf("\n\nMAIN MENU\n1.INSERTION\n2.DELETION\n3.EXIT");
printf("\n\nENTER YOUR CHOICE : ");
scanf("%d",&will);
switch(will)
{
case 1:

printf("\n\nENTER THE QUEUE ELEMENT : ");
scanf("%d",&num);
add(num,MAXSIZE);
break;

case 2:
del(MAXSIZE);
break;

case 3:
exit(0);

default: printf("\n\nInvalid Choice . ");
}

} //end of outer while
} //end of main
void add(int item,int MAX)
{

//rear++;

//rear= (rear%MAX);
if(front ==(rear+1)%MAX)
{
printf("\n\nCIRCULAR QUEUE IS OVERFLOW");
}
else
{
if(front==-1)
front=rear=0;
else
rear=(rear+1)%MAX;
cq[rear]=item;
printf("\n\nRear = %d Front = %d ",rear,front);

}
}
void del(int MAX)
{
int a;
if(front == -1)

{
printf("\n\nCIRCULAR QUEUE IS UNDERFLOW");
}
else
{

a=cq[front];
if(front==rear)
front=rear=-1;
else
front = (front+1)%MAX;

printf("\n\nDELETED ELEMENT FROM QUEUE IS : %d ",a);
printf("\n\nRear = %d Front = %d ",rear,front);

}
}

OUTPUT
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1
ENTER THE QUEUE ELEMENT : 10
Rear=0 Front=0
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 20
Rear=1 Front=0
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1
ENTER THE QUEUE ELEMENT : 30
Rear=2 Front=0
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1
ENTER THE QUEUE ELEMENT : 40
Rear=3 Front=0
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1
ENTER THE QUEUE ELEMENT : 50
Rear=4 Front=0
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 1
ENTER THE QUEUE ELEMENT : 60
CIRCULAR QUEUE IS OVERFLOW.
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
DELETED ELEMENT FROM QUEUE IS : 10
Rear =4 Front=1
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
DELETED ELEMENT FROM QUEUE IS : 20
Rear =4 Front=2
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
DELETED ELEMENT FROM QUEUE IS : 30

Rear =4 Front=3
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
DELETED ELEMENT FROM QUEUE IS : 40
Rear =4 Front=4
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
DELETED ELEMENT FROM QUEUE IS : 50
Rear =-1 Front=-1
MAIN MENU
1. INSERTION
2.DELETION
3.EXIT
ENTER YOUR CHOICE : 2
CIRCULAR QUEUE IS UNDERFLOW.

Write a program to implement queue using array.

/*
* C Program to Implement a Queue using an Array
*/
#include <stdio.h>

#define MAX 50
int queue_array[MAX];
int rear = - 1;
int front = - 1;
main()
{
int choice;
while (1)
{
printf("1.Insert element to queue \n");
printf("2.Delete element from queue \n");
printf("3.Display all elements of queue \n");
printf("4.Quit \n");
printf("Enter your choice : ");
scanf("%d", &choice);
switch (choice)
{
case 1:
insert();
break;
case 2:

delete();
break;
case 3:
display();
break;
case 4:
exit(1);
default:
printf("Wrong choice \n");

} /*End of switch*/
} /*End of while*/

} /*End of main()*/
insert()
{
int add_item;
if (rear == MAX - 1)
printf("Queue Overflow \n");
else
{
if (front == - 1)
/*If queue is initially empty */
front = 0;
printf("Inset the element in queue : ");
scanf("%d", &add_item);
rear = rear + 1;
queue_array[rear] = add_item;

}
} /*End of insert()*/

delete()
{
if (front == - 1 || front > rear)
{
printf("Queue Underflow \n");
return ;

}
else
{
printf("Element deleted from queue is : %d\n", queue_array[front]);
front = front + 1;

}
} /*End of delete() */
display()
{
int i;
if (front == - 1)
printf("Queue is empty \n");

else
{
printf("Queue is : \n");

for (i = front; i <= rear; i++)
printf("%d ", queue_array[i]);

printf("\n");
}

} /*End of display() */

Program Explanation
1. Ask the user for the operation like insert, delete, display and exit.
2. According to the option entered, access its respective function using switch
statement. Use the variables front and rear to represent the first and last element of the
queue.
3. In the function insert(), firstly check if the queue is full. If it is, then print the output
as “Queue Overflow”. Otherwise take the number to be inserted as input and store it
in the variable add_item. Copy the variable add_item to the array queue_array[] and
increment the variable rear by 1.
4. In the function delete(), firstly check if the queue is empty. If it is, then print the
output as “Queue Underflow”. Otherwise print the first element of the array
queue_array[] and decrement the variable front by 1.
5. In the function display(), using for loop print all the elements of the array starting
from front to rear.
6. Exit.
Runtime Test Cases
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 1
Inset the element in queue : 10
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 1
Inset the element in queue : 15
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 1
Inset the element in queue : 20
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 1
Inset the element in queue : 30
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue

4.Quit
Enter your choice : 2
Element deleted from queue is : 10
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 3
Queue is :
15 20 30
1.Insert element to queue
2.Delete element from queue
3.Display all elements of queue
4.Quit
Enter your choice : 4

Write a program to implement queue using linked list.

/*
* C Program to Implement Queue Data Structure using Linked List
*/
#include <stdio.h>
#include <stdlib.h>

struct node
{
int info;
struct node *ptr;

}*front,*rear,*temp,*front1;

int frontelement();
void enq(int data);
void deq();
void empty();
void display();
void create();
void queuesize();

int count = 0;

void main()
{
int no, ch, e;

printf("\n 1 - Enque");
printf("\n 2 - Deque");
printf("\n 3 - Front element");
printf("\n 4 - Empty");
printf("\n 5 - Exit");
printf("\n 6 - Display");

printf("\n 7 - Queue size");
create();
while (1)
{
printf("\n Enter choice : ");
scanf("%d", &ch);
switch (ch)
{
case 1:
printf("Enter data : ");
scanf("%d", &no);
enq(no);
break;

case 2:
deq();
break;

case 3:
e = frontelement();
if (e != 0)
printf("Front element : %d", e);

else
printf("\n No front element in Queue as queue is empty");

break;
case 4:
empty();
break;

case 5:
exit(0);

case 6:
display();
break;

case 7:
queuesize();
break;

default:
printf("Wrong choice, Please enter correct choice ");
break;

}
}

}

/* Create an empty queue */
void create()
{
front = rear = NULL;

}

/* Returns queue size */
void queuesize()
{

printf("\n Queue size : %d", count);
}

/* Enqueing the queue */
void enq(int data)
{
if (rear == NULL)
{
rear = (struct node *)malloc(1*sizeof(struct node));
rear->ptr = NULL;
rear->info = data;
front = rear;

}
else
{
temp=(struct node *)malloc(1*sizeof(struct node));
rear->ptr = temp;
temp->info = data;
temp->ptr = NULL;

rear = temp;
}
count++;

}

/* Displaying the queue elements */
void display()
{
front1 = front;

if ((front1 == NULL) && (rear == NULL))
{
printf("Queue is empty");
return;

}
while (front1 != rear)
{
printf("%d ", front1->info);
front1 = front1->ptr;

}
if (front1 == rear)
printf("%d", front1->info);

}

/* Dequeing the queue */
void deq()
{
front1 = front;

if (front1 == NULL)

{
printf("\n Error: Trying to display elements from empty queue");
return;

}
else
if (front1->ptr != NULL)
{
front1 = front1->ptr;
printf("\n Dequed value : %d", front->info);
free(front);
front = front1;

}
else
{
printf("\n Dequed value : %d", front->info);
free(front);
front = NULL;
rear = NULL;

}
count--;

}

/* Returns the front element of queue */
int frontelement()
{
if ((front != NULL) && (rear != NULL))
return(front->info);

else
return 0;

}

/* Display if queue is empty or not */
void empty()
{

if ((front == NULL) && (rear == NULL))
printf("\n Queue empty");

else
printf("Queue not empty");

}

OUTPUT

1 - Enque
2 - Deque
3 - Front element
4 - Empty
5 - Exit
6 - Display
7 - Queue size

Enter choice : 1
Enter data : 14

Enter choice : 1
Enter data : 85

Enter choice : 1
Enter data : 38

Enter choice : 3
Front element : 14
Enter choice : 6
14 85 38
Enter choice : 7

Queue size : 3
Enter choice : 2

Dequed value : 14
Enter choice : 6
85 38
Enter choice : 7

Queue size : 2
Enter choice : 4
Queue not empty
Enter choice : 5

Write a program to implement circular queue using linked list.
#include<stdio.h>
#include<stdlib.h>

struct node
{
int info;
struct node *link;
}*rear=NULL;

void insert(int item);
int del();
void display();
int isEmpty();
int peek();

int main()
{
int choice,item;
while(1)
{
printf("\n1.Insert\n");

printf("2.Delete\n");
printf("3.Peek\n");
printf("4.Display\n");
printf("5.Quit\n");
printf("\nEnter your choice : ");
scanf("%d",&choice);

switch(choice)
{
case 1:
printf("\nEnter the element for insertion : ");
scanf("%d",&item);
insert(item);
break;
case 2:
printf("\nDeleted element is %d\n",del());
break;
case 3:
printf("\nItem at the front of queue is %d\n",peek());
break;
case 4:
display();
break;
case 5:
exit(1);
default:
printf("\nWrong choice\n");
}/*End of switch*/
}/*End of while*/
}/*End of main()*/

void insert(int item)
{
struct node *tmp;
tmp=(struct node *)malloc(sizeof(struct node));
tmp->info=item;
if(tmp==NULL)
{
printf("\nMemory not available\n");
return;
}

if(isEmpty()) /*If queue is empty */
{
rear=tmp;
tmp->link=rear;
}
else
{
tmp->link=rear->link;

rear->link=tmp;
rear=tmp;
}
}/*End of insert()*/

del()
{
int item;
struct node *tmp;
if(isEmpty())
{
printf("\nQueue underflow\n");
exit(1);
}
if(rear->link==rear) /*If only one element*/
{
tmp=rear;
rear=NULL;
}
else
{
tmp=rear->link;
rear->link=rear->link->link;
}
item=tmp->info;
free(tmp);
return item;
}/*End of del()*/

int peek()
{
if(isEmpty())
{
printf("\nQueue underflow\n");
exit(1);
}
return rear->link->info;
}/* End of peek() */

int isEmpty()
{
if(rear == NULL)
return 1;
else
return 0;
}/*End of isEmpty()*/

void display()
{

struct node *p;
if(isEmpty())
{
printf("\nQueue is empty\n");
return;
}
printf("\nQueue is :\n");
p=rear->link;
do
{
printf("%d ",p->info);
p=p->link;
}while(p!=rear->link);
printf("\n");
}/*End of display()*/

OUTPUT
1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 1

Enter the element for insertion : 1

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 1

Enter the element for insertion : 2

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 1

Enter the element for insertion : 3

1.Insert
2.Delete
3.Peek

4.Display
5.Quit

Enter your choice : 4

Queue is :
1 2 3

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 2

Deleted element is 1

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 3

Item at the front of queue is 2

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 2

Deleted element is 2

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 4

Queue is :
3

1.Insert

2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 2

Deleted element is 3

1.Insert
2.Delete
3.Peek
4.Display
5.Quit

Enter your choice : 2

Queue underflow

Experiment No. 4.
Type of problem Tree & Graph using Linked List

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1. Write a program to implement BFS using linked
list.
2. Write a program to implement tree traversals
using linked list.
3. Write a program to implement DFS using linked
list.

Tree Node
The code to write a tree node would be similar to what is given below. It has a data
part and references to its left and right child nodes.
struct node {
int data;
struct node *leftChild;
struct node *rightChild;

};
In a tree, all nodes share common construct.
BST Basic Operations
The basic operations that can be performed on a binary search tree data structure, are
the following −
Insert − Inserts an element in a tree/create a tree.
Search − Searches an element in a tree.
Preorder Traversal − Traverses a tree in a pre-order manner.
Inorder Traversal − Traverses a tree in an in-order manner.
Postorder Traversal − Traverses a tree in a post-order manner.
We shall learn creating (inserting into) a tree structure and searching a data item in a
tree in this chapter. We shall learn about tree traversing methods in the coming
chapter.
Insert Operation
The very first insertion creates the tree. Afterwards, whenever an element is to be
inserted, first locate its proper location. Start searching from the root node, then if the
data is less than the key value, search for the empty location in the left subtree and
insert the data. Otherwise, search for the empty location in the right subtree and insert
the data.
Algorithm
If root is NULL
then create root node

return

If root exists then
compare the data with node.data

while until insertion position is located

If data is greater than node.data
goto right subtree

else
goto left subtree

endwhile

insert data

end If
Implementation
The implementation of insert function should look like this −
void insert(int data) {
struct node *tempNode = (struct node*) malloc(sizeof(struct node));
struct node *current;
struct node *parent;

tempNode->data = data;
tempNode->leftChild = NULL;
tempNode->rightChild = NULL;

//if tree is empty, create root node
if(root == NULL) {
root = tempNode;

} else {
current = root;
parent = NULL;

while(1) {
parent = current;

//go to left of the tree
if(data < parent->data) {
current = current->leftChild;

//insert to the left
if(current == NULL) {
parent->leftChild = tempNode;
return;

}
}

//go to right of the tree
else {
current = current->rightChild;

//insert to the right
if(current == NULL) {

parent->rightChild = tempNode;
return;

}
}

}
}

}
Search Operation
Whenever an element is to be searched, start searching from the root node, then if the
data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.
Algorithm
If root.data is equal to search.data
return root

else
while data not found

If data is greater than node.data
goto right subtree

else
goto left subtree

If data found
return node

endwhile

return data not found

end if
The implementation of this algorithm should look like this.
struct node* search(int data) {
struct node *current = root;
printf("Visiting elements: ");

while(current->data != data) {
if(current != NULL)
printf("%d ",current->data);

//go to left tree

if(current->data > data) {
current = current->leftChild;

}
//else go to right tree
else {
current = current->rightChild;

}

//not found

if(current == NULL) {
return NULL;

}

return current;
}

}

Write a program to implement BFS using linked list.

/*
* C Program to Display the Nodes of a Tree using BFS Traversal
* 40
* /\
* 20 60
* /\ \
* 10 30 80
* \
* 90
*/
#include <stdio.h>
#include <stdlib.h>

struct btnode
{
int value;
struct btnode *left, *right;

};
typedef struct btnode node;

/* function declarations */
void insert(node *, node *);
void bfs_traverse(node *);

/*global declarations */
node *root = NULL;
int val, front = 0, rear = -1, i;
int queue[20];

void main()
{
node *new = NULL ;
int num = 1;
printf("Enter the elements of the tree(enter 0 to exit)\n");
while (1)
{
scanf("%d", &num);
if (num == 0)

break;
new = malloc(sizeof(node));
new->left = new->right = NULL;
new->value = num;
if (root == NULL)
root = new;

else
{
insert(new, root);

}
}
printf("elements in a tree in inorder are\n");
queue[++rear] = root->value;
bfs_traverse(root);
for (i = 0;i <= rear;i++)
printf("%d -> ", queue[i]);

printf("%d\n", root->right->right->right->value);
}

/* inserting nodes of a tree */
void insert(node * new , node *root)
{
if (new->value>root->value)
{
if (root->right == NULL)
root->right = new;

else
insert (new, root->right);

}
if (new->value < root->value)
{
if (root->left == NULL)
root->left = new;

else
insert (new, root->left);

}
}

/* displaying elements using BFS traversal */
void bfs_traverse(node *root)
{
val = root->value;
if ((front <= rear)&&(root->value == queue[front]))
{
if (root->left != NULL)
queue[++rear] = root->left->value;

if (root->right != NULL || root->right == NULL)
queue[++rear] = root->right->value;

front++;
}

if (root->left != NULL)
{
bfs_traverse(root->left);

}
if (root->right != NULL)
{
bfs_traverse(root->right);

}
}

OUTPUT
Enter the elements of the tree(enter 0 to exit)
40
20
10
30
60
70
80
0
elements in a tree in inorder are
40 -> 20 -> 60 -> 10 -> 30 -> 70 -> 80

Write a program to implement tree traversals using linked list.

/*
* C Program to Construct a Binary Search Tree and perform deletion, inorder
traversal on it
*/
#include <stdio.h>
#include <stdlib.h>

struct btnode
{
int value;
struct btnode *l;
struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void delete1();
void insert();
void delete();
void inorder(struct btnode *t);
void create();
void search(struct btnode *t);
void preorder(struct btnode *t);
void postorder(struct btnode *t);

void search1(struct btnode *t,int data);
int smallest(struct btnode *t);
int largest(struct btnode *t);

int flag = 1;

void main()
{
int ch;

printf("\nOPERATIONS ---");
printf("\n1 - Insert an element into tree\n");
printf("2 - Delete an element from the tree\n");
printf("3 - Inorder Traversal\n");
printf("4 - Preorder Traversal\n");
printf("5 - Postorder Traversal\n");
printf("6 - Exit\n");
while(1)
{
printf("\nEnter your choice : ");
scanf("%d", &ch);
switch (ch)
{
case 1:
insert();
break;

case 2:
delete();
break;

case 3:
inorder(root);
break;

case 4:
preorder(root);
break;

case 5:
postorder(root);
break;

case 6:
exit(0);

default :
printf("Wrong choice, Please enter correct choice ");
break;

}
}

}

/* To insert a node in the tree */
void insert()
{

create();
if (root == NULL)
root = temp;

else
search(root);

}

/* To create a node */
void create()
{
int data;

printf("Enter data of node to be inserted : ");
scanf("%d", &data);
temp = (struct btnode *)malloc(1*sizeof(struct btnode));
temp->value = data;
temp->l = temp->r = NULL;

}

/* Function to search the appropriate position to insert the new node */
void search(struct btnode *t)
{
if ((temp->value > t->value) && (t->r != NULL)) /* value more than root node

value insert at right */
search(t->r);

else if ((temp->value > t->value) && (t->r == NULL))
t->r = temp;

else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root
node value insert at left */

search(t->l);
else if ((temp->value < t->value) && (t->l == NULL))
t->l = temp;

}

/* recursive function to perform inorder traversal of tree */
void inorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display");
return;

}
if (t->l != NULL)
inorder(t->l);

printf("%d -> ", t->value);
if (t->r != NULL)
inorder(t->r);

}

/* To check for the deleted node */

void delete()
{
int data;

if (root == NULL)
{
printf("No elements in a tree to delete");
return;

}
printf("Enter the data to be deleted : ");
scanf("%d", &data);
t1 = root;
t2 = root;
search1(root, data);

}

/* To find the preorder traversal */
void preorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display");
return;

}
printf("%d -> ", t->value);
if (t->l != NULL)
preorder(t->l);

if (t->r != NULL)
preorder(t->r);

}

/* To find the postorder traversal */
void postorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display ");
return;

}
if (t->l != NULL)
postorder(t->l);

if (t->r != NULL)
postorder(t->r);

printf("%d -> ", t->value);
}

/* Search for the appropriate position to insert the new node */
void search1(struct btnode *t, int data)
{
if ((data>t->value))

{
t1 = t;
search1(t->r, data);

}
else if ((data < t->value))
{
t1 = t;
search1(t->l, data);

}
else if ((data==t->value))
{
delete1(t);

}
}

/* To delete a node */
void delete1(struct btnode *t)
{
int k;

/* To delete leaf node */
if ((t->l == NULL) && (t->r == NULL))
{
if (t1->l == t)
{
t1->l = NULL;

}
else
{
t1->r = NULL;

}
t = NULL;
free(t);
return;

}

/* To delete node having one left hand child */
else if ((t->r == NULL))
{
if (t1 == t)
{
root = t->l;
t1 = root;

}
else if (t1->l == t)
{
t1->l = t->l;

}
else

{
t1->r = t->l;

}
t = NULL;
free(t);
return;

}

/* To delete node having right hand child */
else if (t->l == NULL)
{
if (t1 == t)
{
root = t->r;
t1 = root;

}
else if (t1->r == t)
t1->r = t->r;

else
t1->l = t->r;

t == NULL;
free(t);
return;

}

/* To delete node having two child */
else if ((t->l != NULL) && (t->r != NULL))
{
t2 = root;
if (t->r != NULL)
{
k = smallest(t->r);
flag = 1;

}
else
{
k =largest(t->l);
flag = 2;

}
search1(root, k);
t->value = k;

}

}

/* To find the smallest element in the right sub tree */
int smallest(struct btnode *t)
{
t2 = t;
if (t->l != NULL)

{
t2 = t;
return(smallest(t->l));

}
else
return (t->value);

}

/* To find the largest element in the left sub tree */
int largest(struct btnode *t)
{
if (t->r != NULL)
{
t2 = t;
return(largest(t->r));

}
else
return(t->value);

}

OUTPUT
OPERATIONS ---
1 - Insert an element into tree
2 - Delete an element from the tree
3 - Inorder Traversal
4 - Preorder Traversal
5 - Postorder Traversal
6 - Exit

Enter your choice : 1
Enter data of node to be inserted : 40

Enter your choice : 1
Enter data of node to be inserted : 20

Enter your choice : 1
Enter data of node to be inserted : 10

Enter your choice : 1
Enter data of node to be inserted : 30

Enter your choice : 1
Enter data of node to be inserted : 60

Enter your choice : 1
Enter data of node to be inserted : 80

Enter your choice : 1
Enter data of node to be inserted : 90

Enter your choice : 3
10 -> 20 -> 30 -> 40 -> 60 -> 80 -> 90 ->

40
/\
/ \
20 60
/ \ \
10 30 80

\
90

3. Write a program to implement DFS using linked list.

/*
* C Program for Depth First Binary Tree Search using Recursion
*/
#include <stdio.h>
#include <stdlib.h>

struct node
{
int a;
struct node *left;
struct node *right;

};

void generate(struct node **, int);
void DFS(struct node *);
void delete(struct node **);

int main()
{
struct node *head = NULL;
int choice = 0, num, flag = 0, key;

do
{
printf("\nEnter your choice:\n1. Insert\n2. Perform DFS Traversal\n3.

Exit\nChoice: ");
scanf("%d", &choice);
switch(choice)
{
case 1:
printf("Enter element to insert: ");
scanf("%d", &num);
generate(&head, num);
break;

case 2:
DFS(head);
break;

case 3:
delete(&head);
printf("Memory Cleared\nPROGRAM TERMINATED\n");
break;

default:
printf("Not a valid input, try again\n");

}
} while (choice != 3);
return 0;

}

void generate(struct node **head, int num)
{
struct node *temp = *head, *prev = *head;

if (*head == NULL)
{
*head = (struct node *)malloc(sizeof(struct node));
(*head)->a = num;
(*head)->left = (*head)->right = NULL;

}
else
{
while (temp != NULL)
{
if (num > temp->a)
{
prev = temp;
temp = temp->right;

}
else
{
prev = temp;
temp = temp->left;

}
}
temp = (struct node *)malloc(sizeof(struct node));
temp->a = num;
if (num >= prev->a)
{
prev->right = temp;

}
else
{
prev->left = temp;

}
}

}

void DFS(struct node *head)
{
if (head)
{
if (head->left)
{
DFS(head->left);

}
if (head->right)
{
DFS(head->right);

}
printf("%d ", head->a);

}
}

void delete(struct node **head)
{
if (*head != NULL)
{
if ((*head)->left)
{
delete(&(*head)->left);

}
if ((*head)->right)
{
delete(&(*head)->right);

}
free(*head);

}
}

OUTPUT
Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 5

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 3

Enter your choice:

1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 4

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 2

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 7

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 8

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 1
Enter element to insert: 6

Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 2
2 4 3 6 8 7 5
Enter your choice:
1. Insert
2. Perform DFS Traversal
3. Exit
Choice: 3
Memory Cleared
PROGRAM TERMINATED

Experiment No. 5.
Type of problem Linear Search

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1.Write a program on linear search
2.Write a program to compare two numbers
3.Write a program to access array elements
4.Write a program on linear search based on link-list

Linear search is a very simple search algorithm. In this type of search, a sequential
search is made over all items one by one. Every item is checked and if a match is
found then that particular item is returned, otherwise the search continues till the end
of the data collection.

Algorithm
Linear Search (Array A, Value x)

Step 1: Set i to 1
Step 2: if i > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4: Set i to i + 1
Step 5: Go to Step 2
Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found
Step 8: Exit
Pseudocode
procedure linear_search (list, value)

for each item in the list

if match item == value

return the item's location

end if

end for

end procedure

Write a program on linear search
/*
* C program to input N numbers and store them in an array.
* Do a linear search for a given key and report success
* or failure.
*/
#include <stdio.h>

void main()
{
int array[10];
int i, num, keynum, found = 0;

printf("Enter the value of num \n");
scanf("%d", &num);
printf("Enter the elements one by one \n");
for (i = 0; i < num; i++)
{
scanf("%d", &array[i]);

}
printf("Input array is \n");
for (i = 0; i < num; i++)
{
printf("%dn", array[i]);

}
printf("Enter the element to be searched \n");
scanf("%d", &keynum);
/* Linear search begins */
for (i = 0; i < num ; i++)
{
if (keynum == array[i])
{
found = 1;
break;

}
}
if (found == 1)
printf("Element is present in the array\n");

else
printf("Element is not present in the array\n");

}

OUTPUT
Enter the value of num

5
Enter the elements one by one
456
78
90
40
100
Input array is
456
78
90
40
100
Enter the element to be searched
70
Element is not present in the array

Enter the value of num
7
Enter the elements one by one
45
56
89
56
90
23
10
Input array is
45
56
89
56
90
23
10
Enter the element to be searched
45
Element is present in the array

2. Write a program to compare two numbers

/*
* C program to accept two integers and check if they are equal
*/
#include <stdio.h>
void main()
{
int m, n;

printf("Enter the values for M and N\n");
scanf("%d %d", &m, &n);
if (m == n)
printf("M and N are equal\n");

else
printf("M and N are not equal\n");

}

Program Explanation

1. Take the two integers as input and store it in the variables m and n respectively.
2. Using if, else statements check if m is equal to n.
3. If they are equal, then print the output as “M and N are equal”.
4. Otherwise print it as “M and N are not equal”.

OUTPUT

Case:1
Enter the values for M and N
3 3
M and N are equal

Case:2
Enter the values for M and N
5 8
M and N are not equal

3. Write a program to access array elements

*/
* C program to read and print n elements in an array
*/

#include <stdio.h>
#define MAX_SIZE 1000 //Maximum size of the array

int main()
{
int arr[MAX_SIZE]; //Declares an array of MAX_SIZE
int i, N;

/* Input size of the array */
printf("Enter size of array: ");
scanf("%d", &N);

/* Input elements in array */
printf("Enter %d elements in the array : ", N);
for(i=0; i<N; i++)
{

scanf("%d", &arr[i]);
}

/*
* Print all elements of array
*/
printf("\nElements in array are: ");
for(i=0; i<N; i++)
{
printf("%d, ", arr[i]);

}

return 0;
}

OUTPUT

Enter size of array: 10
Enter 10 elements in the array: 10
20
30
40
50
60
70
80
90
100

Elements in array are: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

4. Write a program on linear search based on link-list
/*
* C Program to Search for an Element in the Linked List without
* using Recursion */

#include <stdio.h>
#include <stdlib.h>

struct node
{
int a;
struct node *next;

};

void generate(struct node **, int);
void search(struct node *, int);
void delete(struct node **);

int main()
{
struct node *head = NULL;
int key, num;

printf("Enter the number of nodes: ");
scanf("%d", &num);
printf("\nDisplaying the list\n");
generate(&head, num);
printf("\nEnter key to search: ");
scanf("%d", &key);
search(head, key);
delete(&head);

return 0;
}

void generate(struct node **head, int num)
{
int i;
struct node *temp;

for (i = 0; i < num; i++)
{
temp = (struct node *)malloc(sizeof(struct node));
temp->a = rand() % num;
if (*head == NULL)
{
*head = temp;
temp->next = NULL;

}
else
{
temp->next = *head;
*head = temp;

}
printf("%d ", temp->a);

}
}

void search(struct node *head, int key)
{
while (head != NULL)
{
if (head->a == key)
{
printf("key found\n");
return;

}

head = head->next;
}
printf("Key not found\n");

}

void delete(struct node **head)
{
struct node *temp;

while (*head != NULL)
{
temp = *head;
*head = (*head)->next;
free(temp);

}
}
OUTPUT
Enter the number of nodes: 10

Displaying the list
3 6 7 5 3 5 6 2 9 1
Enter key to search: 2
key found

Experiment No. 6.
Type of problem Binary Search

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments
1.Write a program on Binary Search
2.Write a program to access array elements randomly
3.Write a program on multi-way Search

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This
search algorithm works on the principle of divide and conquer. For this algorithm to
work properly, the data collection should be in the sorted form.
Binary search looks for a particular item by comparing the middle most item of the
collection. If a match occurs, then the index of item is returned. If the middle item is
greater than the item, then the item is searched in the sub-array to the left of the
middle item. Otherwise, the item is searched for in the sub-array to the right of the
middle item. This process continues on the sub-array as well until the size of the
subarray reduces to zero.
How Binary Search Works?
For a binary search to work, it is mandatory for the target array to be sorted. We shall
learn the process of binary search with a pictorial example. The following is our
sorted array and let us assume that we need to search the location of value 31 using
binary search.

First, we shall determine half of the array by using this formula −
mid = low + (high - low) / 2
Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31.
We find that the value at location 4 is 27, which is not a match. As the value is greater
than 27 and we have a sorted array, so we also know that the target value must be in
the upper portion of the array.

We change our low to mid + 1 and find the new mid value again.
low = mid + 1
mid = low + (high - low) / 2
Our new mid is 7 now. We compare the value stored at location 7 with our target
value 31.

The value stored at location 7 is not a match, rather it is more than what we are
looking for. So, the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a
match.

We conclude that the target value 31 is stored at location 5.
Binary search halves the searchable items and thus reduces the count of comparisons
to be made to very less numbers.
Pseudocode
The pseudocode of binary search algorithms should look like this −
Procedure binary_search
A ← sorted array
n ← size of array
x ← value to be searched

Set lowerBound = 1
Set upperBound = n

while x not found
if upperBound < lowerBound
EXIT: x does not exists.

set midPoint = lowerBound + (upperBound - lowerBound) / 2

if A[midPoint] < x
set lowerBound = midPoint + 1

if A[midPoint] > x
set upperBound = midPoint - 1

if A[midPoint] = x
EXIT: x found at location midPoint

end while

end procedure

Write a program on Binary Search
/* C Program - Binary Search */

#include<stdio.h>
#include<conio.h>
void main()
{

clrscr();
int n, i, arr[50], search, first, last, middle;
printf("Enter total number of elements :");
scanf("%d",&n);
printf("Enter %d number :", n);
for (i=0; i<n; i++)
{

scanf("%d",&arr[i]);
}
printf("Enter a number to find :");
scanf("%d", &search);
first = 0;
last = n-1;
middle = (first+last)/2;
while (first <= last)
{

if(arr[middle] < search)
{

first = middle + 1;

}
else if(arr[middle] == search)
{

printf("%d found at location %d\n", search, middle+1);
break;

}
else

{
last = middle - 1;

}
middle = (first + last)/2;

}
if(first > last)
{

printf("Not found! %d is not present in the list.",search);
}
getch();

}

OUTPUT

Enter total number of elements: 5
Enter 5 numbers: 12
23
34
45
56
Enter a number to find: 34
34 found at location 3

Experiment No. 7.
Type of problem Binary Search Tree (BST)

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments
1.Write a program to implement BST
2.Write a program to create binary tree using pointers
3.Write a program to traverse binary tree

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-
mentioned properties −
The left sub-tree of a node has a key less than or equal to its parent node's key.
The right sub-tree of a node has a key greater than to its parent node's key.
Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right
sub-tree and can be defined as −
left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)
Representation
BST is a collection of nodes arranged in a way where they maintain BST properties.
Each node has a key and an associated value. While searching, the desired key is
compared to the keys in BST and if found, the associated value is retrieved.
Following is a pictorial representation of BST −

We observe that the root node key (27) has all less-valued keys on the left sub-tree
and the higher valued keys on the right sub-tree.
Basic Operations
Following are the basic operations of a tree −
Search − Searches an element in a tree.
Insert − Inserts an element in a tree.
Pre-order Traversal − Traverses a tree in a pre-order manner.
In-order Traversal − Traverses a tree in an in-order manner.
Post-order Traversal − Traverses a tree in a post-order manner.
Node
Define a node having some data, references to its left and right child nodes.
struct node {
int data;
struct node *leftChild;

struct node *rightChild;
};
Search Operation
Whenever an element is to be searched, start searching from the root node. Then if the
data is less than the key value, search for the element in the left subtree. Otherwise,
search for the element in the right subtree. Follow the same algorithm for each node.
Algorithm
struct node* search(int data){
struct node *current = root;
printf("Visiting elements: ");

while(current->data != data){

if(current != NULL) {
printf("%d ",current->data);

//go to left tree
if(current->data > data){
current = current->leftChild;

}//else go to right tree
else {
current = current->rightChild;

}

//not found
if(current == NULL){
return NULL;

}
}

}
return current;

}
Insert Operation
Whenever an element is to be inserted, first locate its proper location. Start searching
from the root node, then if the data is less than the key value, search for the empty
location in the left subtree and insert the data. Otherwise, search for the empty
location in the right subtree and insert the data.
Algorithm
void insert(int data) {
struct node *tempNode = (struct node*) malloc(sizeof(struct node));
struct node *current;
struct node *parent;

tempNode->data = data;
tempNode->leftChild = NULL;
tempNode->rightChild = NULL;

//if tree is empty
if(root == NULL) {
root = tempNode;

} else {
current = root;
parent = NULL;

while(1) {
parent = current;

//go to left of the tree
if(data < parent->data) {
current = current->leftChild;
//insert to the left

if(current == NULL) {
parent->leftChild = tempNode;
return;

}
}//go to right of the tree
else {
current = current->rightChild;

//insert to the right
if(current == NULL) {
parent->rightChild = tempNode;
return;

}
}

}
}

}

Write a program to implement BST
/*
* C Program to Construct a Binary Search Tree and perform deletion, inorder
traversal on it
*/
#include <stdio.h>
#include <stdlib.h>

struct btnode
{
int value;
struct btnode *l;
struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void delete1();
void insert();
void delete();
void inorder(struct btnode *t);
void create();

void search(struct btnode *t);
void preorder(struct btnode *t);
void postorder(struct btnode *t);
void search1(struct btnode *t,int data);
int smallest(struct btnode *t);
int largest(struct btnode *t);

int flag = 1;

void main()
{
int ch;

printf("\nOPERATIONS ---");
printf("\n1 - Insert an element into tree\n");
printf("2 - Delete an element from the tree\n");
printf("3 - Inorder Traversal\n");
printf("4 - Preorder Traversal\n");
printf("5 - Postorder Traversal\n");
printf("6 - Exit\n");
while(1)
{
printf("\nEnter your choice : ");
scanf("%d", &ch);
switch (ch)
{
case 1:
insert();
break;

case 2:
delete();
break;

case 3:
inorder(root);
break;

case 4:
preorder(root);
break;

case 5:
postorder(root);
break;

case 6:
exit(0);

default :
printf("Wrong choice, Please enter correct choice ");
break;

}
}

}

/* To insert a node in the tree */
void insert()
{
create();
if (root == NULL)
root = temp;

else
search(root);

}

/* To create a node */
void create()
{
int data;

printf("Enter data of node to be inserted : ");
scanf("%d", &data);
temp = (struct btnode *)malloc(1*sizeof(struct btnode));
temp->value = data;
temp->l = temp->r = NULL;

}
/* Function to search the appropriate position to insert the new node */
void search(struct btnode *t)
{
if ((temp->value > t->value) && (t->r != NULL)) /* value more than root node

value insert at right */
search(t->r);

else if ((temp->value > t->value) && (t->r == NULL))
t->r = temp;

else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root
node value insert at left */

search(t->l);
else if ((temp->value < t->value) && (t->l == NULL))
t->l = temp;

}

/* recursive function to perform inorder traversal of tree */
void inorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display");
return;

}
if (t->l != NULL)
inorder(t->l);

printf("%d -> ", t->value);
if (t->r != NULL)
inorder(t->r);

}

/* To check for the deleted node */
void delete()
{
int data;

if (root == NULL)
{
printf("No elements in a tree to delete");
return;

}
printf("Enter the data to be deleted : ");
scanf("%d", &data);
t1 = root;
t2 = root;
search1(root, data);

}

/* To find the preorder traversal */
void preorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display");
return;

}
printf("%d -> ", t->value);
if (t->l != NULL)
preorder(t->l);

if (t->r != NULL)
preorder(t->r);

}

/* To find the postorder traversal */
void postorder(struct btnode *t)
{
if (root == NULL)
{
printf("No elements in a tree to display ");
return;

}
if (t->l != NULL)
postorder(t->l);

if (t->r != NULL)
postorder(t->r);

printf("%d -> ", t->value);
}

/* Search for the appropriate position to insert the new node */
void search1(struct btnode *t, int data)

{
if ((data>t->value))
{
t1 = t;
search1(t->r, data);

}
else if ((data < t->value))
{
t1 = t;
search1(t->l, data);

}
else if ((data==t->value))
{
delete1(t);

}
}

/* To delete a node */
void delete1(struct btnode *t)
{
int k;

/* To delete leaf node */
if ((t->l == NULL) && (t->r == NULL))
{
if (t1->l == t)
{
t1->l = NULL;

}
else
{
t1->r = NULL;

}
t = NULL;
free(t);
return;

}

/* To delete node having one left hand child */
else if ((t->r == NULL))
{
if (t1 == t)
{
root = t->l;
t1 = root;

}
else if (t1->l == t)
{
t1->l = t->l;

}
else
{
t1->r = t->l;

}
t = NULL;
free(t);
return;

}

/* To delete node having right hand child */
else if (t->l == NULL)
{
if (t1 == t)
{
root = t->r;
t1 = root;

}
else if (t1->r == t)
t1->r = t->r;

else
t1->l = t->r;

t == NULL;
free(t);
return;

}

/* To delete node having two child */
else if ((t->l != NULL) && (t->r != NULL))
{
t2 = root;
if (t->r != NULL)
{
k = smallest(t->r);
flag = 1;

}
else
{
k =largest(t->l);
flag = 2;

}
search1(root, k);
t->value = k;

}

}

/* To find the smallest element in the right sub tree */
int smallest(struct btnode *t)
{

t2 = t;
if (t->l != NULL)
{
t2 = t;
return(smallest(t->l));

}
else
return (t->value);

}

/* To find the largest element in the left sub tree */
int largest(struct btnode *t)
{
if (t->r != NULL)
{
t2 = t;
return (largest(t->r));

}
else
return (t->value);

}

OUTPUT
OPERATIONS ---
1 - Insert an element into tree
2 - Delete an element from the tree
3 – In order Traversal
4 – Pre order Traversal
5 – Post order Traversal
6 - Exit

Enter your choice: 1
Enter data of node to be inserted: 40

Enter your choice: 1
Enter data of node to be inserted: 20

Enter your choice: 1
Enter data of node to be inserted: 10

Enter your choice: 1
Enter data of node to be inserted: 30

Enter your choice: 1
Enter data of node to be inserted: 60

Enter your choice: 1
Enter data of node to be inserted: 80

Enter your choice: 1

Enter data of node to be inserted: 90

Enter your choice: 3
10 -> 20 -> 30 -> 40 -> 60 -> 80 -> 90 ->

40
/\
/ \
20 60
/ \ \
10 30 80

\
90

Experiment No. 8.
Type of problem Bubble sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1.Write a program on Bubble sort
2.Write a program to swap numbers
3.Write a program to use nested loops
4.Write a program on linear bubble sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the
adjacent elements if they are in wrong order.
Example:
First Pass:
(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and
swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed.
The algorithm needs one whole pass without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is
reverse sorted.
Best Case Time Complexity: O(n). Best case occurs when array is already sorted.
Auxiliary Space: O(1)
Boundary Cases: Bubble sort takes minimum time (Order of n) when elements are
already sorted.
Sorting In Place: Yes
Stable: Yes

Write a program on Bubble sort

C program for implementation of Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;

}

// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)

// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);

}

/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);

printf("n");
}

// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;

}

OUTPUT:
Sorted array:
11 12 22 25 34 64 90

Experiment No. 9.
Type of problem Selection sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments 1.Write a program on Selection sort
2.Write a program to find largest from array
3.Write a program on Selection sort based on link-list

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place
comparison-based algorithm in which the list is divided into two parts, the sorted part
at the left end and the unsorted part at the right end. Initially, the sorted part is empty
and the unsorted part is the entire list.
The smallest element is selected from the unsorted array and swapped with the
leftmost element, and that element becomes a part of the sorted array. This process
continues moving unsorted array boundary by one element to the right.
This algorithm is not suitable for large data sets as its average and worst case
complexities are of Ο(n2), where n is the number of items.
How Selection Sort Works?
Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first
position where 14 is stored presently, we search the whole list and find that 10 is the
lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum
value in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a
linear manner.

We find that 14 is the second lowest value in the list and it should appear at the
second place. We swap these values.

After two iterations, two least values are positioned at the beginning in a sorted
manner.

The same process is applied to the rest of the items in the array.
Time Complexity: O(n2) as there are two nested loops.
Auxiliary Space: O(1)
The good thing about selection sort is it never makes more than O(n) swaps and can
be useful when memory write is a costly operation.

Following is a pictorial depiction of the entire sorting process −

Now, let us learn some programming aspects of selection sort.
Algorithm
Step 1 − Set MIN to location 0
Step 2 − Search the minimum element in the list
Step 3 − Swap with value at location MIN
Step 4 − Increment MIN to point to next element
Step 5 − Repeat until list is sorted
Pseudocode
procedure selection sort
list : array of items
n : size of list

for i = 1 to n - 1
/* set current element as minimum*/
min = i

/* check the element to be minimum */

for j = i+1 to n
if list[j] < list[min] then
min = j;

end if
end for

/* swap the minimum element with the current element*/
if indexMin != i then
swap list[min] and list[i]

end if

end for

end procedure

Write a program on Selection sort
/ C program for implementation of selection sort
#include <stdio.h>

void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;

}

void selectionSort(int arr[], int n)
{
int i, j, min_idx;

// One by one move boundary of unsorted subarray
for (i = 0; i < n-1; i++)
{
// Find the minimum element in unsorted array
min_idx = i;
for (j = i+1; j < n; j++)
if (arr[j] < arr[min_idx])
min_idx = j;

// Swap the found minimum element with the first element
swap(&arr[min_idx], &arr[i]);

}
}

/* Function to print an array */
void printArray(int arr[], int size)
{

int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);

printf("\n");
}

// Driver program to test above functions
int main()
{
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr)/sizeof(arr[0]);
selectionSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;

}

OUTPUT
Sorted array:
11 12 22 25 64

Experiment No. 10.
Type of problem Insertion sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments
1.Write a program on Insertion sort
2.Write a program to insert a number into a array
3.Write a program on Insertion sort based on link-list

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained
which is always sorted. For example, the lower part of an array is maintained to be
sorted. An element which is to be 'insert'ed in this sorted sub-list, has to find its
appropriate place and then it has to be inserted there. Hence the name, insertion sort.
The array is searched sequentially and unsorted items are moved and inserted into the
sorted sub-list (in the same array). This algorithm is not suitable for large data sets as
its average and worst case complexity are of Ο(n2), where n is the number of items.
How Insertion Sort Works?
We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted
sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we
see that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence,
the sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4
items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now
we shall see some programming aspects of insertion sort.
Algorithm
Now we have a bigger picture of how this sorting technique works, so we can derive
simple steps by which we can achieve insertion sort.
Step 1 − If it is the first element, it is already sorted. return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in the sorted sub-list
Step 4 − Shift all the elements in the sorted sub-list that is greater than the

value to be sorted
Step 5 − Insert the value
Step 6 − Repeat until list is sorted
Pseudocode
procedure insertionSort(A : array of items)
int holePosition
int valueToInsert

for i = 1 to length(A) inclusive do:

/* select value to be inserted */
valueToInsert = A[i]
holePosition = i

/*locate hole position for the element to be inserted */

while holePosition > 0 and A[holePosition-1] > valueToInsert do:
A[holePosition] = A[holePosition-1]
holePosition = holePosition -1

end while

/* insert the number at hole position */
A[holePosition] = valueToInsert

end for

end procedure

Time Complexity: O(n*n)
Auxiliary Space: O(1)
Boundary Cases: Insertion sort takes maximum time to sort if elements are sorted in
reverse order. And it takes minimum time (Order of n) when elements are already
sorted.
Algorithmic Paradigm: Incremental Approach
Sorting In Place: Yes
Stable: Yes
Online: Yes
Uses: Insertion sort is used when number of elements is small. It can also be useful
when input array is almost sorted, only few elements are misplaced in complete big
array.

Write a program on Insertion sort
// C program for insertion sort
#include <stdio.h>
#include <math.h>

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{
int i, key, j;
for (i = 1; i < n; i++)
{
key = arr[i];
j = i-1;

/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */

while (j >= 0 && arr[j] > key)

{
arr[j+1] = arr[j];
j = j-1;

}
arr[j+1] = key;

}
}

// A utility function ot print an array of size n
void printArray(int arr[], int n)
{
int i;
for (i=0; i < n; i++)
printf("%d ", arr[i]);

printf("\n");
}

/* Driver program to test insertion sort */
int main()
{
int arr[] = {12, 11, 13, 5, 6};
int n = sizeof(arr)/sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

return 0;
}

OUTPUT:
5 6 11 12 13

Experiment No. 11.
Type of problem Merge sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1.Write a program on Merge sort
2.Write a program to merge two sorted array
3.Write a program to use a recursive function call
4.Write a program to display step by step merge sort

Merge Sort
Like QuickSort, Merge Sort is a Divide and Conquer algorithm. It divides input array
in two halves, calls itself for the two halves and then merges the two sorted halves.
The merge() function is used for merging two halves. The merge(arr, l, m, r) is key
process that assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two
sorted sub-arrays into one. See following C implementation for details.
MergeSort(arr[], l, r)
If r > l

1. Find the middle point to divide the array into two halves:
middle m = (l+r)/2

2. Call mergeSort for first half:
Call mergeSort(arr, l, m)

3. Call mergeSort for second half:
Call mergeSort(arr, m+1, r)

4. Merge the two halves sorted in step 2 and 3:
Call merge(arr, l, m, r)

The following diagram from wikipedia shows the complete merge sort process for an
example array {38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we
can see that the array is recursively divided in two halves till the size becomes 1.
Once the size becomes 1, the merge processes comes into action and starts merging
arrays back till the complete array is merged.

http://quiz.geeksforgeeks.org/quick-sort/
http://www.geeksforgeeks.org/divide-and-conquer-set-1-find-closest-pair-of-points/
http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Time Complexity: Sorting arrays on different machines. Merge Sort is a recursive
algorithm and time complexity can be expressed as following recurrence relation.
T(n) = 2T(n/2) +
The above recurrence can be solved either using Recurrence Tree method or Master
method. It falls in case II of Master Method and solution of the recurrence is .
Time complexity of Merge Sort is in all 3 cases (worst, average and best) as merge
sort always divides the array in two halves and take linear time to merge two halves.
Auxiliary Space: O(n)
Algorithmic Paradigm: Divide and Conquer
Sorting In Place: No in a typical implementation
Stable: Yes
Applications of Merge Sort
Merge Sort is useful for sorting linked lists in O(nLogn) time. In case of linked lists
the case is different mainly due to difference in memory allocation of arrays and
linked lists. Unlike arrays, linked list nodes may not be adjacent in memory. Unlike
array, in linked list, we can insert items in the middle in O(1) extra space and O(1)
time. Therefore merge operation of merge sort can be implemented without extra

http://www.geeksforgeeks.org/merge-sort-for-linked-list/

space for linked lists.
In arrays, we can do random access as elements are continuous in memory. Let us say
we have an integer (4-byte) array A and let the address of A[0] be x then to access
A[i], we can directly access the memory at (x + i*4). Unlike arrays, we can not do
random access in linked list. Quick Sort requires a lot of this kind of access. In linked
list to access i’th index, we have to travel each and every node from the head to i’th
node as we don’t have continuous block of memory. Therefore, the overhead
increases for quick sort. Merge sort accesses data sequentially and the need of random
access is low.
Inversion Count Problem
Used in External Sorting

Write a program on Merge sort
/* C program for Merge Sort */
#include<stdlib.h>
#include<stdio.h>

// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r)
{
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m;

/* create temp arrays */
int L[n1], R[n2];

/* Copy data to temp arrays L[] and R[] */
for (i = 0; i < n1; i++)
L[i] = arr[l + i];

for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j];

/* Merge the temp arrays back into arr[l..r]*/
i = 0; // Initial index of first subarray
j = 0; // Initial index of second subarray
k = l; // Initial index of merged subarray
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;

}
else
{
arr[k] = R[j];
j++;

http://www.geeksforgeeks.org/counting-inversions/
http://en.wikipedia.org/wiki/External_sorting

}
k++;

}

/* Copy the remaining elements of L[], if there
are any */

while (i < n1)
{
arr[k] = L[i];
i++;
k++;

}

/* Copy the remaining elements of R[], if there
are any */

while (j < n2)
{
arr[k] = R[j];
j++;
k++;

}
}

/* l is for left index and r is right index of the
sub-array of arr to be sorted */

void mergeSort(int arr[], int l, int r)
{
if (l < r)
{
// Same as (l+r)/2, but avoids overflow for
// large l and h
int m = l+(r-l)/2;

// Sort first and second halves
mergeSort(arr, l, m);
mergeSort(arr, m+1, r);

merge(arr, l, m, r);
}

}

/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", A[i]);

printf("\n");
}

/* Driver program to test above functions */
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int arr_size = sizeof(arr)/sizeof(arr[0]);

printf("Given array is \n");
printArray(arr, arr_size);

mergeSort(arr, 0, arr_size - 1);

printf("\nSorted array is \n");
printArray(arr, arr_size);
return 0;

}

OUTPUT:
Given array is
12 11 13 5 6 7

Sorted array is
5 6 7 11 12 13

Experiment No. 12.

Type of problem Quick sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments
1.Write a program on Quick sort
2.Write a program to divide an array into two part
3.Write a program to display step by step quick sort

QuickSort
Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks an element as
pivot and partitions the given array around the picked pivot. There are many different
versions of quickSort that pick pivot in different ways.
Always pick first element as pivot.
Always pick last element as pivot (implemented below)
Pick a random element as pivot.
Pick median as pivot.
The key process in quickSort is partition(). Target of partitions is, given an array and
an element x of array as pivot, put x at its correct position in sorted array and put all
smaller elements (smaller than x) before x, and put all greater elements (greater than x)
after x. All this should be done in linear time.
Pseudo Code for recursive Quick Sort function :
/* low --> Starting index, high --> Ending index */
quickSort(arr[], low, high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi
quickSort(arr, pi + 1, high); // After pi

}
}

http://quiz.geeksforgeeks.org/merge-sort/

Partition Algorithm
There can be many ways to do partition; following pseudo code adopts the method
given in CLRS book. The logic is simple, we start from the leftmost element and keep
track of index of smaller (or equal to) elements as i. While traversing, if we find a
smaller element, we swap current element with arr[i]. Otherwise we ignore current
element.
/* low --> Starting index, high --> Ending index */
quickSort(arr[], low, high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi
quickSort(arr, pi + 1, high); // After pi

}
}

Pseudo code for partition()
/* This function takes last element as pivot, places the pivot element at its correct
position in sorted array, and places all smaller (smaller than pivot) to left of pivot and
all greater elements to right of pivot */

partition (arr[], low, high)
{
// pivot (Element to be placed at right position)
pivot = arr[high];

i = (low - 1) // Index of smaller element

for (j = low; j <= high- 1; j++)
{
// If current element is smaller than or
// equal to pivot
if (arr[j] <= pivot)
{
i++; // increment index of smaller element
swap arr[i] and arr[j]

}
}
swap arr[i + 1] and arr[high])
return (i + 1)

}
Illustration of partition() :
arr[] = {10, 80, 30, 90, 40, 50, 70}
Indexes: 0 1 2 3 4 5 6

low = 0, high = 6, pivot = arr[h] = 70
Initialize index of smaller element, i = -1

Traverse elements from j = low to high-1
j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 0
arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j

// are same

j = 1 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 1
arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30

j = 3 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 2
arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped
j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]
i = 3
arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped

We come out of loop because j is now equal to high-1. Finally we place pivot at
correct position by swapping arr[i+1] and arr[high] (or pivot) arr[] = {10, 30, 40, 50,
70, 90, 80} // 80 and 70 Swapped

Now 70 is at its correct place. All elements smaller than 70 are before it and all
elements greater than 70 are after it.

Analysis of QuickSort
Time taken by QuickSort in general can be written as following.
T(n) = T(k) + T(n-k-1) + (n)

The first two terms are for two recursive calls; the last term is for the partition process.
k is the number of elements which are smaller than pivot.
The time taken by Quick Sort depends upon the input array and partition strategy.
Following are three cases.

Worst Case: The worst case occurs when the partition process always picks greatest
or smallest element as pivot. If we consider above partition strategy where last
element is always picked as pivot, the worst case would occur when the array is
already sorted in increasing or decreasing order. Following is recurrence for worst
case.

T(n) = T(0) + T(n-1) + (n)

which is equivalent to

T(n) = T(n-1) + (n)

The solution of above recurrence is (n2).

Best Case: The best case occurs when the partition process always picks the middle
element as pivot. Following is recurrence for best case.

T(n) = 2T(n/2) + (n)

The solution of above recurrence is (nLogn). It can be solved using case 2 of Master
Theorem.

Average Case:

To do average case analysis, we need to consider all possible permutation of array and
calculate time taken by every permutation which doesn’t look easy.

We can get an idea of average case by considering the case when partition puts O(n/9)
elements in one set and O(9n/10) elements in other set. Following is recurrence for
this case.

T(n) = T(n/9) + T(9n/10) + (n)

Solution of above recurrence is also O(nLogn)

Although the worst case time complexity of QuickSort is O(n2) which is more than
many other sorting algorithms like Merge Sort and Heap Sort, QuickSort is faster in
practice, because its inner loop can be efficiently implemented on most architectures,
and in most real-world data. QuickSort can be implemented in different ways by
changing the choice of pivot, so that the worst case rarely occurs for a given type of
data. However, merge sort is generally considered better when data is huge and stored

http://en.wikipedia.org/wiki/Master_theorem
http://en.wikipedia.org/wiki/Master_theorem
http://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
http://www.geeksforgeeks.org/analysis-of-algorithms-set-2-asymptotic-analysis/
http://quiz.geeksforgeeks.org/merge-sort/
http://quiz.geeksforgeeks.org/heap-sort/

in external storage.

What is 3-Way QuickSort?
In simple QuickSort algorithm, we select an element as pivot, partition the array
around pivot and recur for subarrays on left and right of pivot.

Consider an array which has many redundant elements. For example, {1, 4, 2, 4, 2, 4,
1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4 is picked as pivot in Simple QuickSort, we fix
only one 4 and recursively process remaining occurrences. In 3 Way QuickSort, an
array arr[l..r] is divided in 3 parts:

a) arr[l..i] elements less than pivot.
b) arr[i+1..j-1] elements equal to pivot.
c) arr[j..r] elements greater than pivot.

How to implement QuickSort for Linked Lists?

QuickSort on Singly Linked List
QuickSort on Doubly Linked List
Can we implement QuickSort Iteratively?

Yes, please refer Iterative Quick Sort.

Why Quick Sort is preferred over MergeSort for sorting Arrays

Quick Sort in its general form is an in-place sort (i.e. it doesn’t require any extra
storage) whereas merge sort requires O(N) extra storage, N denoting the array size
which may be quite expensive. Allocating and de-allocating the extra space used for
merge sort increases the running time of the algorithm. Comparing average
complexity we find that both type of sorts have O(NlogN) average complexity but the
constants differ. For arrays, merge sort loses due to the use of extra O(N) storage
space.

Most practical implementations of Quick Sort use randomized version. The
randomized version has expected time complexity of O(nLogn). The worst case is
possible in randomized version also, but worst case doesn’t occur for a particular
pattern (like sorted array) and randomized Quick Sort works well in practice.

Quick Sort is also a cache friendly sorting algorithm as it has good locality of
reference when used for arrays.

Quick Sort is also tail recursive, therefore tail call optimizations is done.

Why MergeSort is preferred over QuickSort for Linked Lists?

In case of linked lists the case is different mainly due to difference in memory
allocation of arrays and linked lists. Unlike arrays, linked list nodes may not be
adjacent in memory. Unlike array, in linked list, we can insert items in the middle in
O(1) extra space and O(1) time. Therefore merge operation of merge sort can be
implemented without extra space for linked lists.

http://www.geeksforgeeks.org/quicksort-on-singly-linked-list/
http://www.geeksforgeeks.org/quicksort-for-linked-list/
http://www.geeksforgeeks.org/iterative-quick-sort/

In arrays, we can do random access as elements are continuous in memory. Let us say
we have an integer (4-byte) array A and let the address of A[0] be x then to access
A[i], we can directly access the memory at (x + i*4). Unlike arrays, we cannot do
random access in linked list. Quick Sort requires a lot of this kind of access. In linked
list to access i’th index, we have to travel each and every node from the head to i’th
node as we don’t have continuous block of memory. Therefore, the overhead
increases for quick sort. Merge sort accesses data sequentially and the need of random
access is low.

Write a program on Quick sort
/* C implementation QuickSort */
#include<stdio.h>

// A utility function to swap two elements
void swap(int* a, int* b)
{
int t = *a;
*a = *b;
*b = t;

}

/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */

int partition (int arr[], int low, int high)
{
int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element

for (int j = low; j <= high- 1; j++)
{
// If current element is smaller than or
// equal to pivot
if (arr[j] <= pivot)
{
i++; // increment index of smaller element
swap(&arr[i], &arr[j]);

}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);

}

/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */

void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */

int pi = partition(arr, low, high);

// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
}

/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);

printf("n");
}

// Driver program to test above functions
int main()
{
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr)/sizeof(arr[0]);
quickSort(arr, 0, n-1);
printf("Sorted array: n");
printArray(arr, n);
return 0;

}
OUTPUT:
Sorted array:
1 5 7 8 9 10

Experiment No. 13.
Type of problem Heap sort

Students are required to
implement/execute/draw/make
document

1. Algorithm
2. Program
3. Output
4. Final document with evaluator signature.

List of experiments

1.Write a program on Heap sort
2.Write a program to represent binary tree using
array
3.Write a program to create Max-Heap
4.Write a program on Heap sort in descending
order

Heap Sort
Heap sort is a comparison based sorting technique based on Binary Heap data
structure. It is similar to selection sort where we first find the maximum element and
place the maximum element at the end. We repeat the same process for remaining
element.
What is Binary Heap?
Let us first define a Complete Binary Tree. A complete binary tree is a binary tree in
which every level, except possibly the last, is completely filled, and all nodes are as
far left as possible (Source Wikipedia)
A Binary Heap is a Complete Binary Tree where items are stored in a special order
such that value in a parent node is greater(or smaller) than the values in its two
children nodes. The former is called as max heap and the latter is called min heap.
The heap can be represented by binary tree or array.
Why array based representation for Binary Heap?
Since a Binary Heap is a Complete Binary Tree, it can be easily represented as array
and array based representation is space efficient. If the parent node is stored at index I,
the left child can be calculated by 2 * I + 1 and right child by 2 * I + 2 (assuming the
indexing starts at 0).
Heap Sort Algorithm for sorting in increasing order:
1. Build a max heap from the input data.
2. At this point, the largest item is stored at the root of the heap. Replace it with the
last item of the heap followed by reducing the size of heap by 1. Finally, heapify the
root of tree.
3. Repeat above steps while size of heap is greater than 1.
How to build the heap?
Heapify procedure can be applied to a node only if its children nodes are heapified. So
the heapification must be performed in the bottom up order.
Lets understand with the help of an example:
Input data: 4, 10, 3, 5, 1

4(0)
/ \

10(1) 3(2)
/ \
5(3) 1(4)

http://geeksquiz.com/binary-heap/
http://en.wikipedia.org/wiki/Binary_tree
http://geeksquiz.com/binary-heap/

The numbers in bracket represent the indices in the array representation of data.

Applying heapify procedure to index 1:
4(0)
/ \

10(1) 3(2)
/ \
5(3) 1(4)

Applying heapify procedure to index 0:
10(0)
/ \

5(1) 3(2)
/ \

4(3) 1(4)
The heapify procedure calls itself recursively to build heap in top down manner.

Heap sort is an in-place algorithm.
Its typical implementation is not stable, but can be made stable (See this)
Time Complexity: Time complexity of heapify is O(Logn). Time complexity of
createAndBuildHeap() is O(n) and overall time complexity of Heap Sort is O(nLogn).
Applications of HeapSort
1. Sort a nearly sorted (or K sorted) array
2. k largest(or smallest) elements in an array
Heap sort algorithm has limited uses because Quicksort and Mergesort are better in
practice. Nevertheless, the Heap data structure itself is enormously used.

Write a program on Heap sort

// C++ program for implementation of Heap Sort
#include <iostream>
using namespace std;

// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
void heapify(int arr[], int n, int i)
{
int largest = i; // Initialize largest as root
int l = 2*i + 1; // left = 2*i + 1
int r = 2*i + 2; // right = 2*i + 2

// If left child is larger than root
if (l < n && arr[l] > arr[largest])
largest = l;

// If right child is larger than largest so far
if (r < n && arr[r] > arr[largest])
largest = r;

http://www.geeksforgeeks.org/stability-in-sorting-algorithms/
http://www.geeksforgeeks.org/nearly-sorted-algorithm/
http://www.geeksforgeeks.org/k-largestor-smallest-elements-in-an-array/

// If largest is not root
if (largest != i)
{
swap(arr[i], arr[largest]);

// Recursively heapify the affected sub-tree
heapify(arr, n, largest);

}
}

// main function to do heap sort
void heapSort(int arr[], int n)
{
// Build heap (rearrange array)
for (int i = n / 2 - 1; i >= 0; i--)
heapify(arr, n, i);

// One by one extract an element from heap
for (int i=n-1; i>=0; i--)
{
// Move current root to end
swap(arr[0], arr[i]);

// call max heapify on the reduced heap
heapify(arr, i, 0);

}
}

/* A utility function to print array of size n */
void printArray(int arr[], int n)
{
for (int i=0; i<n; ++i)
cout << arr[i] << " ";

cout << "\n";
}

// Driver program
int main()
{
int arr[] = {12, 11, 13, 5, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);

heapSort(arr, n);

cout << "Sorted array is \n";
printArray(arr, n);

OUTPUT:
Sorted array is
5 6 7 11 12 1

	Engineering Graduates will be able to:
	BCS-351. 1
	BCS-351. 2
	BCS-351. 3
	BCS-351. 4
	BCS-351. 5

